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LETTER TO THE EDITOR 

Direct determination of the helium interatomic core 
potential by neutron scattering 

W Montfrooij?, I M de Scheppert, L A de Graaft, A K Soper$ and 
W S Howelk$ 
f Interfaculty Reactor Institute, Delft University of Technology, 2629 JB Delft, The 
Netherlands 
$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 OQX, UK 

Received 14 November 1989 

Abstract. The three derivatives of the static structure factor S ( k )  with respect to density n ,  
temperature Tand wavenumber k are determined for He at n = 18.7 and T = 13.3 K 
by means of neutron scattering. Using an exact scaling relation valid for interatomic core 
potentials q ( r )  = E(u/T) ' ,  the results for helium are consistent with a power 1 = 18 2 2. 

The determination of the effective two-particle interatomic potential q ( r )  of noble gas 
fluids by means of neutron scattering experiments has been a long standing problem in 
equilibrium statistical physics [l] .  In principle, the full interatomic potential q ( r )  can be 
deduced directly from the measured static structure factors S(k)  at low number densities 
n using the fact that the pair correlation function g(r )  (which is the spatial Fourier 
transform of S ( k ) )  is, for n+ 0, given by g(r )  = exp(-q(r)/kBT), where T is the 
temperature of the fluid and kB is the Boltzmann constant. So far, a reliable direct 
determination of q ( r )  from low density data for S(k)  has only been achieved for argon 
[2] due to its exceptionally large neutron scattering cross section. At finite densities, 
Meyer et a1 [3,4] have shown that information about the interatomic (repulsive) core 
forces can be deduced from S ( k )  at large wavenumbers k (i.e. k > 2 A-'). They applied 
a formalism based on softened hard sphere interactions [5,6], i.e. for interactions given 
by 

q ( r )  = E ( d +  (1) 
with E the interaction energy, CJ the effective diameter, Y the distance between two 
particles and 1 the power of the interaction law. Meyer et a1 find [3,4] for high densities 
that I = 15 for Ne and that 1 = 19 for Ar (in agreement with the argon results for q ( r )  of 
[2]). Here we apply a new method to determine the power 1 for helium. In fact we 
determine by neutron scattering the derivatives of S(k)  with respect to n ,  T and k ,  and 
use an exact relation between these three derivatives and 1 which holds for the potentials 
q ( r )  of equation (1) and which is valid for all n and T and for all k .  Thus we obtain I = 
18 k 2 for helium in the region 4 K < T < 22 K and 18 nm-3 < n < 25 nm-3. 

The experiment was performed using the time-of-flight diffractometer LAD at the 
Rutherford Appleton Laboratory. The cross section of the incident neutron beam was 
1.5 x 4.0 cm2. The sample container consisted of a vanadium cylinder with height 5 cm, 
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Table 1. Thermodynamic ( n , p ,  T )  states of helium [lo] for which S ( k )  is measured. 

13.3 21.9 

n (nm-’) 

18.7 
22.0 
24.8 

1.12bar 40.3 bar 78.4 bar 
- 58.3 bar - 
- 81.6 bar - 

diameter 2 cm and wall thickness 0.05 cm (maximum pressure 90 bar). To avoid large 
inelasticity corrections we only used the small angle detector groups (at 5, 10, 20 and 
35”). We calculated the static structure factors S ( k )  from the time-of-flight spectra using 
the LAD standard correction programs [7,8]. We obtained the helium S ( k )  data for five 
thermodynamic states (see table 1): n = 18.7 nm-3, T = 4.3 K, 13.3 K and 21.9 K, and 
T = 13.3 K,  n = 22.0 nm-3 and 24.8 nm-3. A full account of the experimental results 
will be given elsewhere [9]. S(k)  at T = 13.3 K and n = 18.7 nm-3 and its derivative 
dS(k ) /ak  are shown in figure 1. From the five S(k) ,  we obtained the derivatives of S(k )  
with respect to n and T by numerical differentiation. 

To interpret the results, we note that for the interatomic potentials q ( r )  of (l), S ( k )  
is given by 

S(k)  = S l (ku (T) ,  ~ u ( T ) ~ )  (2) 

u ( T )  = u ( E / ~ ,  T)”‘ (3) 

where 

1‘ N I  1 
S[(x ,y)=-  [ j  d s l . .  . d ~ ~ e x p [ - @ ~ + i x . ( s ~ - s , ) ]  

”=l 

Here x is a reduced wave vector with length x = 1x1, x = k u ( T )  is the reduced wave- 
number and y = nu( T ) 3  is the reduced number density. Furthermore 

N 

1.,=1 

+I 

is the reduced total interaction potential, and the integration in equation (4) over the 
reduced location s, of particle j runs over 

W i Y )  I/’ dS,x Io(N/j)”3 ds,, Io(N/Y) 
ds, . . . = Io I’ ds,, . . . . (6) 

Therefore, in the thermodynamic limit ( x ,  y constant; N -  a), Sl(x,  y )  is a function of 1, 
x and y only. As a consequence of this result and of equations (2) and (3) one finds 
straightforwardly that the power I of the interaction potential is given by 

1 = (kaS(k ) /dk  + 3 n d s ( k ) / a n ) / ( - T a S ( k ) / a T )  (7) 

valid for all k ,  n and T. Here the partial derivative with respect to k is taken at constant 
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Figure 1 .  ( a )  S ( k )  of helium at n = 18.7 nm 'and 
T =  13.3 K as a function of k .  S(0) (cross at k = 
0) is taken from compressibility data [lo]. ( b )  

from (a) .  

Figure 2. Partial derivatives of S ( k )  for helium at 
n = 18.7 nm-' and T = 13.3 K as functions of k .  
Error bars: k d S ( k ) / d k  + 3ndS(k)/an. Full curve: 

Partial derivative d S ( k ) / d k  calculated directly - 18TdS(k)/il T. 

n ,  T; to n at constant k ,  T, and to T a t  constant k ,  n. Equation (7) includes the hard 
sphere potential for which dS(k)/d T = 0 and 1 = =. 

In figure 2 we show kdS(k ) /dk  + 3ndS(k ) /dn  (at n = 18.7 nm-3, T = 13.3 K) as a 
function of k .  For a large k-region (1 A-' < k < 6 A-') we find this quantity to be 
proportional to TdS(k)/aT (cf. (7)). This is shown in figure 2 where -TdS(k)/aT is 
displayed multiplied with I = 18. In fact, we find from the present results for helium 
(at n = 18.7 nm-3, T = 13.3 K) that 1 = 18 ? 2. Our results show furthermore that 
TdS(k)/d T at n = 18.7 nm-3 is virtually constant when T varies from T = 4.3 K to T = 
29.3 K. Also, the shape of kaS(k)/ak + 3naS(k) /dn at T = 13.3 K does not change 
significantly from n = 18.7 nm-3 ton  = 24.8 nm-3-at least fork > 1 A-'. We conclude 
therefore that the result 1 = 18 k 2 is relevant for helium in the whole region 
1 8 ~ ~  < n < 25 nm-3 a n d 4 K  < T < 22 K. 

We end with a number of remarks. 
We find that the helium value I = 18 t 2 is not significantly different from the neon 

and argon values for 1. Thus, it appears that the law of corresponding states holds for 
q ( r )  of the noble gas fluids He, Ne, Ar. 

A direct comparison between the q ( r )  = E(o/r)' potential and the Lennard-Jones 
potential q L J ( r )  = 4 ~ [ ( o / r ) ' ~  - ( ~ / r ) ~ ]  leads to an estimation of 1. For instance, if the 
two potentials are made to coincide at 4 ~ ,  then this would render a value of 1 = 17. 

It might be interesting to see whether I depends on the density. If so, this would mean 
that q ( r )  is an effective pair potential, effectively taking into account the (density 
dependent) three- (and four-) body forces. 

We expect that equation (7) breaks down for n ,  Tnear the critical point, in particular 
for small k-since the attractive part of the interatomic potential will be seen most clearly 
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in that region (i.e. k < 1 A-'). It is unclear at present if (7) will hold then for microscopic 
values of k ,  i.e. for k = 2 A-' near the first maximum of S(k) .  

This work was supported by the Netherlands Organization for Scientific Research 
(NWO). 
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